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~Nomenclature

in normal boundary layer coordinate
~streamwise 

boundary layer coordinate

f dimensionless stream function variable

S specified wall shear
N number of steps in the normal direction
M number of steps in the streamwise direction

Lj I right hand side groups for spline correction

equations containing known quantities from

previous iteration or streamwise stationsTj

Bi 4 x 4 block tridiagonal coefficient matrices

CRj column vector of known quantities

Zi solution correction vector

Cconvergence 
criteria value

n iteration number

i streamwise grid location
., 

normal grid location

i All other quantities are defined in the text.
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1. Introduction

The object of the present study is the accurate numerical determination of

- the pressure gradient distribution for specified wall shear in a laminar

boundary layer. This is known as the inverse problem. This procedure is

sometimes preferable to the standard problem, in which the pressure

distribution is prescribed and the body shear stress is determined by the

solution of the boundary layer equations.

One method of determining the pressure gradient distribution is the

mechul function scheme, developed by Cebeci and Keller [11. This scheme

was found to be accurate and efficient for self-similar type flow problems.

For non-similar flow problems, however, this method exhibits a weak

numerical instability. The instability appears as a disturbance that

develops in the far field of the computational domain and propagates towards

the wall. As a result, the numerical solution is ultimately destroyed as

it is marched downstream.

The inverse problem requires the determination of a coefficient function,

the pressure gradient parameter, which satisfies an over-determined set of

4. boundary conditions that result when the wall shear is specified. The mechul

function scheme adds an extra differential equation for the pressure gradient

to the system of boundary layer equations. As a result, the system is no

A, longer over-determined, and the governing equations may be solved as an

extention of the standard problem.
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.1 This study reformulates the mechul function scheme as developed in Ref.

[I] in such a way that the numerical instability is eliminated, thus yielding

an accurate solution method. Whereas in Ref. [11, the Keller box scheme was

used to discretize the differential equations, the new procedure applies

fourth order splines developed by Rubin and Khosla [3] to approximate the

normal derivatives and three point backward differences for the streamwise

derivatives. This yields a fully implicit method which lends stability to the

solution.

In the present work, the discretized, linearized system of equations

put into a standard block tridiagonal form. Lower-upper decomposition "d

to solve the resulting block matrix system with partial pivoting within tie

.4 blocks to prevent the buildup of round-off errors. Reformulation of the

governing equations became necessary with the discovery that the spline

techniques, applied to the original formulation in Ref. [1), yielded a

singular block matrix on the diagonal during forward substitution. By a

slight recasting of the differential equation governing the pressure gradient,

this singularity is removed in the matrix.

This study considers the solution of both self-similar and non-similar

laminar boundary layer problems. Falkner-Skan problems with positive and

* negative wall shear and two non-similar flow situations are computed.

II. Analysis

Governing Differential Equations

The governing equations in this vroblem are the two-dimensional boundary

layer equations for incompressible laminar flow. In dimensi nless stream

function form, the boundary layer equation is written

-'b
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f + ff + a(1 - f 2 2E(ff f fMin rin In)  ' fn -) f n ) ()

where

n a

The pressure gradient parameter, 8 , is given by

du
2 e (2)
u dE

e

.' where ue is the velocity at the edge of the boundary layer. The boundary

conditions for the computational domain, shown in Fig. 1, are identical

to those given in Ref. [1].

f(C,O) = f () (3a)

f (E) = uw(P) (3b)

f( ,n ) = 1 . (3c)

For the problem considered here, the mass transfer and velocity at the wall

are taken to be zero. The quantity n. = q.(&) is the location of the outer

edge of the boundary layer, which, for simplicity, is taken as constant for

this analysis. Equations (1) and (3) define the standard problem.

For the inverse problem, the wall shear is specified as

f (E,O) = S()J 0 . (4)

"nn

* .
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Equations (1), (3) and (4) lead to an over-determined system. To complete

the formulation of the mechul function scheme, the pressure gradient parameter

is written as

Then in Ref. [11 the following derivative condition is introduced:

0 > 0 .(5)
an

The pressure gradient parameter is thus determined by solving Eqs. (1) and

(5) together with boundary conditions (3) and (4).

For self-similar flows,

f( ,n) = 0 . (6)

Therefore, the boundary conditions and the pressure gradient are independent

of the streamwise coordinate. In this case, the differential equations

reduce to

f + ff + a(_ f2) 0 (7a)
Tnnq nn

8 : 0 (7b)n

yielding a system of ordinary differential equations.

It was found during the present study that the original gradient parameter

condition, Eq. (5), used with the fourth order spline relations, leads to a

singular matrix when solving the resulting block tridiagonal system by

L-U decomposition. Using a constant normal stepsize in the spline S1(4,0)

given in Ref. [31 yields a singular block matrix on the diagonal, thus

preventing the solution of the matrix. This problem became apparent in

the forward substitution step.

U.

..
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To eliminate this singularity, the pressure gradient parameter condition

was changed to

2---a = o_ (8)

3 n

Then, the condition

3-, 0 0 (5)

is enforced at the wall with two point spline boundary conditions. Using the

alternate fourth order spline relation S2(4,O) from Ref. [31 produces a non-

singular matrix for constant or varying stepsize while still forcing the

pressure gradient to be independent of n.

Differential Equations in First Order Form

The governing differential equations, (1), are written in first order form

with the exception of Eq. (8):

f fu (9a)

ur = T (9b)

8 = 0 (9c)
nfl

8i - U - fT + 2 (uu - tf)(9d)

Then the boundary conditions are

f(&,O) = 0 (10a)

u(&,O) = 0 (lOb)

Si d.. ..
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*O -- (1oc)

u( ,n ) = 1 . (lOd)

Streamwise Discretization

The governing differential equations are discretized using fourth order

accurate splines in the normal direction and backward differences in the

streamwise direction. For the E derivatives, the following general backward

difference formula for constant stepsize is used.

(g A- I bg 1,j + cg- ,j

For i > 2, the three point second-order accurate version is used with

3 1
a= b =-1 ,and c = (Ila)

whereas, for the second downstream station (i = 2), the first-order accurate

(two point) formula is used with

a = 1 , b =-1 ,and c - . (11b)

Examining the governing equations, only Eq. (9d) contains streamwise

derivaties. Applying Eq. (11) to the u and f derivatives yields

[(Ti~ (U 2i~ [u 1j ) - f, Ti,

+ 2 2 +cu 2_

+aiJ(aui'j + ii J i 1 iJ

-
2 ai (jafi,jTi,J + bfi-,jrij + cfi-2,j Tjj ) (12)

* **** ., ,% % "." .% a+ . .%. 'V % a.VV . %% .%-. %
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where

or's Normal DiscretizatLon

Since first and second derivatives with respect to qi occur in the

equations, the splines S1(4,O) and S2(4,Q) are used. To apply the spline

approximations in the normal direction, the following spline derivatives

are defined:

I. f (13a)

Iu~ (13b)

T

= T n (13c)

(13d)

LO 8 . (13e)

These definitions are then substituted into the governing equations.

Substituting definitions (13) into Eqs. (9) yields

Ij = U1  (14a)

I u = T(14b)
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Li =0 (14c)

,= i,ji,j - I) - (2aai j + L)f ij Ti j

- 2, i + cfi

:i 2 _

2 au2, 2 2

+ cij(au 2 + bu 2_, j + cu2 (14d)

From Ref. [31, the tridiagonal relation for S'(4,0) is, at a streamwise

.station i,

L9 + 1+ a)2.tg + =2t
3+1 j -I. :

2 [ (1 +2a g+ 1+03
1 + a h 1 a) 3 g

- a2(2 + a)gj]

where

h = An

h

j h

. . - . . . . . , . . . , , . . , , . - . , . . . .

r,.-,,S.. - .-. ' * ' ' ' ' ,.,x.*,. ., ',,,,, ',,''-', ''.,. -'...,..., .j---: ."; : ;- . "
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and , is the first derivative spline approximation of (3g/h)j. The

tridiagonal relation for S2(4,0) is given as

2 3 22

- O L g a + 4o + 4a + 1 0 + I + a- a L_
12a j+ +  12ca 12 3-1

-1 [ + g3 + g (16)h. 2 a a gJ-1 "

where L is the second derivative spline approximation of (g/a2 )j

To eliminate the spline derivatives, Eqs. (14a), (14b) and (14d) are

substituted into the S1(4,0) relation given by Eq. (15). The second

derivative condition, Eq. (14c), can be substituted into the S2(4,0)

relation. This yields the following four tridiagonal relations

(i subscript understood). A! coefficients are given in Appendix X.

azu' 1 +OCu +u = a3f 1 +4f +5f j+ (17a)

a2"rJ 1 + C31Tj + j+l = 3uJ- 1 + a4uj + a5uj+ 1  (17b)

o80JI + o76 + a60 = 0 (17c)

'I,

.4,..

• V . . ' - I
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l2[(cl + )u2 - 8 + c2fT + E-,T]
_ j-1

+ 1[(cl + 8)2 - + c2fT + 2.T]

J j J

1: " [(c, + 8)u2 _ 8 + c2fT + 93T] +

a.-.' = 2C4J_1 - alc4 - c4j (17d)I ii. j+1 1d

Linearization

c-k The block tridiagonal relations given by Eq. (17) form a nonlinear

system relating (f,u,T,O)ij. These equations are first linearized and

then solved using Newton's method. The Newton iterates are given by

f(n+1) =(n) (n)fl, =ft~ + 6fl (18a)

*i~j i~j i~j

(n+l) (n) (n)
uijj = uijj + ui1,j (18b)

T, (n+l) .T(n) + 6 (n)(1c

i,J i,j i,j

(n+l) . (n) (n)8s , 8"S, + 68i, (18d)

where the superscript indicates the iteration number. Equations (18) are

substituted into the tridiagonal relations at the (n+l)st iteration and

the quadratic and higher order terms are neglected. This allows the
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equations to be solved for the unknown corrections, with all other terms

being known at iteration (n). Moving known quantities to the right hand

side, the linearized correction equations in block tridiagonal form at

streamwise station i are

- a36f i + a26uJ_1 - a46f + al6u. - o56fj+ I + uI = L. (19a)

A AA

- o36uj J + 02 6Tj _ - o46u + alT i - a56u,+l + 6TJ+ = P (19b)

AA A

- 86B - 760 - o66 = Qj (19c)

2[A6f + B6u + 6T + G68J-1 + al[Adf + Bdu + E t r + G508]

+ Af + Bu + F6 + G j+l = (19d)

A A A A A

where Ai, Bit Dig E and F are coefficients obtained from the linearization

of the equations (refer to Appendix A).

These block tridiagonal equations can then be written in the following

matrix form (i subscript understood)

B Z I + A Z + CZ , 2 < j < N (20)

-, where

6f

64 6u (21)

Iv

4%

- ?*, . .; ) '*:.': .'. .€ . .,',. .'-' '..,, -> . ,.' : :.....'.. , -* ..... i, - :. .- , , ,.?..?-.;.X '



-17- 4 May 1984
KCK:GHH:Ihz

and Aj, Bj, Cj are 4 x 4 block matrices and Rj is the column vector of known

quantities.

* Two Point Spline Relations at the Wall

The boundary conditions at the wall in correction form, at streamwise

station i, are

6f1 = 0 (22a)

6u, = 0 (22b)

6T 0 (22c)

One additional condition must be provided to close the system at the wall. A

two point spiiae boundary condition, given in Ref. [3], is used.

h0 2 j (L L0 (23)
02 122112 2 1

This relation allows the original pressure gradient condition to be enforced

at the wall. From the governing equations,

L. - 0

and, enforcing the original gradient condition

it 0

yields the simple relationship

02 = 01 (24a)

or, in correction form

% i -',-. . .-. . -. ..-..... .. . -.-. - . ,'.'... " ",'-.'.'. '.. . .-. ... . , • .-.', '. ..p
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6 82=6 1 . (24b)

The linearized block system for the solution corrections at the wall can then

be written in the following matrix form:

A1Z1 + CIZ2 = R (25)

Z.

with Zj defined by Eq. (21).

Two Point Spline Relation at the Outer Edge

The far field boundary condition is, at any i,

Su N+1 = 0 .(26)

Three additional conditions are required to close the system. The two point

spline conditions are again applied. For one relation, the following is

used:

h2

f -f - hN+l  hN+1 -t TO . (27a)
N+I N 2  (UN++2UN) 2 12 TN+ -N 0

Differentiating Eq. (27a) with respect to n yields
hh

N+l N+I t
UN+l -UN 2 (N+l + TN) + -- N+ - N = . (27b)

Differentiating once more gives

hN+l T +1it --- (LN(+ T LN)

" N+l 'N 2 (XN+ N 12 N+ N N
a.

a,.

a,
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Assuming the difference between the second order terms to be negligible

compared to the lower order terms, the above equation simplifies to

Ah

TN+I - TN 2 N m (27c)

Equations (27) provide the three additional conditions required for the far

field. These equations are linearized and solved for the correction terms as

before and then written in matrix form.

%' .-

-. +,ABZ =R . (28)
B N+ ZN AN+1 ZN+ RN+(

Solution of Block Tridiagonal Matrix Equation

The block tridiagonal system formed by Eqs. (20), (25) and (28) is solved

using standard lower-upper (LU) decomposition together with partial pivoting

within the 4 x 4 blocks to prevent the buildup of roundoff errors. A block

tridiagonal solver using subroutines developed by Blottner [41 which perform

the partial pivoting is used to solve the matrix equations for the corrections

at each iteration.

Starting Solution

The Falkner-Skan self-similar equations are obtained by setting equal to

zero in Eqs. (1) and (8).

f + ff + 30 - f 0 (29a)nnn nnl

a n nn = 0 . (29b)
fin

The boundary conditions given by Eqs. (3) and (4), with no dependence on ,

are used. The solution of this ordinary differential equation with splines

Ii. 

'
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approximating all n derivatives is used as the starting solution for the

non-similar case. The scheme is derived so that the Falkner-Skan solutions

• ." for positive and negative wall shear can also be computed.

.s an initial guess for the starting solution, a fourth order Pohlhausen-

type polynomial is used to approximate (f,u,Ta)i,j at 0. The Pohlhausen

polynomial for the velocity is of the form

u b + c 2 + d 3 + e 4 (30)

A where

u = u(n)

and the constants b, c, d and e can be found by applying the boundary

conditions and the ordinary differential equation. The stream function and

the shear can be found by integrating and differentiating Eq. (30)

respectively. By substituting into the differential equation, Eq. (29a),

an approximation for 0 is obtained in the form

6S% - 12

2 (31)

Once the starting solution is determined, the second streamwise station

must be treated in a special way for the non-similar flow case. With only

one previous streamwise step known, two point backward differences are used

to approximate the derivatives. Past this station, three point backward

differences are used. The solution profile at the last calculated station

is used as the first approximation at the new station.

'.

* U * . '* '* *' * ' o* **~
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III. Results and Discussion

Similar Flow Problem

Computations for similar flows were performed for positive and negative

wall shears. For all positive wall shears, the solutions were obtained

independently for a specific shear. For the negative wall shears, the

sensitivity of the method to the initial guess required calculating solutions

consecutively for small steps in shear and using the previous solution profile

as an initial guess for the next profile. The solution process was begun for

a zero wall shear, S = 0, and the shear was decremented by 0.01 or 0.05.

Solution comparisons are made between the present reformulated scheme,

the original mechul function formulation [1], and the nonlinear eigenvalue

scheme [21. This method was developed by Keller and Cebeci before the mechul

function scheme. The eigenvalue method solves the inverse problem by treating

the unknown pressure gradient as an eigenvalue. Then, two iteration

procedures, an "inner" and an "outer" iteration, are performed. The inner

iteration solves the governing equations for a standard problem assuming 8

is known. This inner iteration is then used with Newton's method to determine

the pressure gradient parameter using the variational equations in the outer

iteration procedure. The variational equations are the standard boundary

layer equations differentiated with respect to 8.

For positive wall shears computed with the reformulated scheme, a normal

stepsize of An 0.15 is used with n. = 6; for reverse flow solutions and

separation (S = 0), An = 0.15 and n. 9 are used. The criteria used for

convergence is

C = 1 8(n+l)- 8(n)l 1 r0- 8

441
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Cebeci and Keller applied a similar convergence test to the original scheme as

well as the eigenvalue scheme with E < I0-4 [1,2].

The results of the self-similar flow calculations with positive wall

shear are given in Table I. These results are compared with those of Smith

[5]. Comparison shows the values from the reformulated nechul function scheme

closely approach those of Smith. All cases converged quadratically. It

should be noted that the greater number of iterations required for convergence

with the reformulated scheme are the result of the present more severe

convergence criteria.

The results of the reverse flow computations are presented in Table 1I.

These results are compared with those of Stewartson [6]. Again, the agreement

is good. Here, the number of iterations decreases appreciably with the use of

consecutive calculations. Figure 2 shows examples of both positive and

negative wall shear velocity profiles.

Non-Similar Flow Problem

Non-similar flow computations were performed using two linear wall shear

distributions. The first case, given by

S(C) = 0.4696 (1 - A)

has a zero pressure gradient at E = 0, indicating a flat plate flow. The

second case, given by

S( ) = 1.23259 (1 - )

has a pressure gradient parameter of unity at E = 0, indicating a stagnation

point. Both cases approach zero shear at 1 I, yielding separation. Both

cases were computed with values of n. = 6 and n. = 9. For all non-similar

computations, a streamwise stepsize of A = 0.05 was used, with An = 0.25.

!I
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The convergence criteria applied is identical to that used for the self-

similar cases.

A comparison of results for the first case is given in Tables III and IV.

Table III compares the results with those of Refs. I1l and 12). The

agreement with the Richardson extrapolation results obtained from the

eigenvalue scheme values is quite good. The numerical instability experienced

by the original formulation does not appear in the present method. It was

found that with n. = 6, the solution would not converge at E stations near

separation, yet with n. = 9, the solution would march through the separation

point at = 1. Once past separation, however, the scheme quickly becomes

unstable and the solution does not converge. Table IV compares results for

Case 1 with n = 6 and n = 9.

A comparison of results for the second case is given in Tables V and VI.

In Table V, the results are compared with results from Ref. [2], since no

results are available for this case with the original mechul function

formulation. The agreement with the Richardson extrapolation is again very

good. As with case one, the results could be obtained through separation only

with n. = 9. Table VI compares the results for the two values of n,.

Figures 3 and 4 are plots the pressure gradient parameter as a function of

. for both non-similar cases. The results are smooth, with a minimum

occurring just before separation for computations performed with n. = 9.

A Note on Normal Stepsize

For all numerical cases presented, the normal stepsize, An, is kept

constant for reasons of comparison with Refs. [1] and [2]. Non-similar

cases were computed, however, using a geometric progression for n, with

nj+,/nj 1.1. Using this geometric progression, both non-similar cases

".'-. . - °< # - ----- -' ,i, :
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would proceed through separation with n = 6. The results obtained are

identical with those produced with a constant stepsize and n. = 9. Using

the geometric progression also allowed the number of normal steps to be

.i halved without decreasing solution accuracy.

-.. IV. Conclusion

An accurate, stable, and efficient method is developed to determine the

pressure gradient distribution on a body surface in a laminar boundary layer

flow with wall shear specified. The reformulated mechul function scheme

presented here does not exhibit the numerical instability experienced with

non-similar type flow problems in Ref. [1]. The method is fully implicit

and is applicable to Falkner-Skan as well as non-similar flow problems.

Reverse flow self-similar problems have also been computed but are found

to be very sensitive to the initial solution guess.

The reformulated scheme uses fourth order splines to approximate

derivatives in the normal direction and three point backward differences for

the streamwise derivatives, both to aid solution stability. Partial pivoting

is used within the 4 x 4 blocks resulting from the discretized, linearized

equations of motion. These modifications prevent the instability described in

Ref. [1].

The results for both similar and non-similar cases were found to be stable

and accurate with quadratic convergence consistently observed. It was found

that solution calculations would proceed through the separation point with

constant stepsize and n,, = 9, or with a geometric progression and n. - 6.

Although all solutions converged quadratically upstream of the separation

point, using a more accurate initial guess would decrease iteration counts

*- further.

• -° " ° ' , -" " " . . .- . " ° - .. . .* 9 . ." ° ° - ", - ' - q
9

* • - " . * . . . . . .
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Appendix A

Fourth Order Spline Coefficients:

al = ( + 1) 2

2o2 = a

2
'3 1 2o (2+a)

h. 1 + o
i

I 2(a-1)(o+l)
a4 h.

5 1 2(1+2a)
5 h. 1 + a

3

1 1 + aa7 2 o

a8 1 +
h

hj

Streamwise Discretization Coefficients:

Exai~j A&

cl aa

c2 - (2a + 1)

c3j = - 2(baifi. l1  + ccifi_ 2 ,)

c4 =ai(bu
2  + cu_2

............ ... -... ....................
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El C3 _ 3
j j-1 a2

E2. = C3 a

I j a 1

E3 =C3 - a5

Ej -- ¢jl- -

Coefficients Resulting fromi Linearization:

A . C2 T
i i

B. 2u.(C. +

"' .3 .3 a3

C. = C2.f

D = CI + El

I j =iCi fj

Ej =C +E2

F = c J+ l E3

..

2
G =u -1

2,
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